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1 Executive Summary 

Integrated Environmental Assessment systems and ecosystem models study the links between 
anthropogenic and climatic pressures on marine ecosystems and help understand how to manage 
the effects of the unsustainable exploitation of ocean resources. However, these models have 
long implementation times, data and model interoperability issues and require heterogeneous 
competencies. Therefore, they would benefit from simplification, automatisation, and enhanced 
integrability of the underlying models. Artificial Intelligence can help overcome several limitations 
by speeding up the modelling of crucial functional parts, e.g., estimating the environmental 
conditions fostering species persistence and proliferation in an area (ecological niche) and, 
consequently, its geographical distribution. This deliverable presents a full-automatic workflow to 
estimate species distributions through statistical and machine learning models developed in the 
context of the EcoScope WP4-Task 4.3. 

The workflow embeds four ecological niche models with complementary approaches, i.e., Artificial 
Neural Networks, Maximum Entropy, Support Vector Machines, and AquaMaps. Optimal model 
parametrisations and decision thresholds (suitable and unsuitable habitat locations) are 
automatically estimated and combined in one ensemble model. Finally, results of several 
ensemble models are combined to produce the species richness map (biodiversity index). The 
software is open-source, Open Science compliant, and available as a Web Processing Service-
standardised cloud computing service that enhances efficiency, integrability with other software, 
cross-domain reusability, and experimental reproduction and repetition. 

In this deliverable we describe the workflow, assess its stability and sensitivity, and demonstrate 
its effectiveness by producing a species richness indicator for the Mediterranean based on data 
for 1508 species. Moreover, we demonstrate the use of the workflow by predicting the spread of 
the invasive marbled spinefoot (Siganus rivulatus) in the Mediterranean and its current and future 
overlap with the native salema (Sarpa salpa) under different climate change scenarios. 
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2 Introduction 

The unsustainable exploitation of ocean resources – with overfishing, chemical and physical 
pollution, and heavy maritime traffic – threatens oceans, seas, and coasts. Climate change further 
exacerbates this problem [1, 2]. Digital technologies are crucial tools to understand how to 
manage the effects of this pressure and potentially help mitigate it. For example, Integrated 
Environmental Assessment systems (IEAs) and ecosystem models (EMs) allow studying the links 
between anthropogenic driving forces, environmental pressures, and the response of ecosystems 
to these [3–8]. However, several studies on these models [9–12] have highlighted frequent data 
interoperability and scalability issues, adoption of heuristic and non-automatic approaches, and 
results produced with limited transparency as limitations. 

Artificial Intelligence (AI) methods can help overcome these limitations. For example, they can 
help automate the discovery of organic relationships between ecosystems, environmental 
conditions, and anthropogenic stressors [13–16], identify the essential data to assess current 
ecosystem status [17–19], estimate potential species distribution change over time [20–22], and 
predict alien and invasive species spread in an area [23–26]. Autonomous algorithms with minimal 
parametrisation requirements speed up modelling, produce objective results, and maximise 
model use by communities with heterogeneous competencies [27]. Moreover, algorithms 
endowed with Open Science features of reproducibility, repeatability, and reusability of processes 
and results improve transparency [28]. Open Science compliance requires models to be available 
under recognised standards of interoperability and integrability and the published results to be 
repeatable and reproducible (after changing some model-parameter values). These features also 
guarantee the transparency of the results for decision-making authorities and foster the 
consideration of the results in policy making [29–32]. 

Ecological niche models (ENMs) play a crucial role in this context. ENMs predict the set of 
resources and environmental conditions favourable for species persistence and proliferation in an 
area (ecological niche) [33–37]. ENMs assign known species habitat(s) as areas with suitable 
environmental conditions that define its ecological niche. Consequently, ENMs can predict the 
presence/absence of the species in an area [38, 39]. If the study area corresponds to the known 
native species range, then the ENM will estimate the actual (or native) species distribution. 
Otherwise, in areas where the species has never been observed (e.g., far from the native region), 
the ENM will estimate the potential (or suitable) species distribution [40]. Mathematically, an 
ecological niche is a region in a vector space (a hypervolume) of the environmental variables 
associated with species survival. The effectiveness of ENMs depends on correctly identifying the 
most complete set of environmental variables constituting the vector space dimensions [33]. 
Environmental variable selection for ENMs is frequently conducted through statistical analysis 
[41–45] or machine learning models [46–51]. Generally, an ENM uses statistical analysis, 
machine learning, or expert-defined rules to estimate a function relating an ecological entity (e.g., 
a species, community, or ecosystem) with specific environmental conditions defined on a set of 
environmental variables. 

Typically, the input of an ENM is a set of environmental variables represented as spatial 
distributions over the analysis spatial extent, e.g., coming from extensive collections of satellite 
or in situ probe data [52–58]. Another input is a set of species observations in the area (presence 
locations) and locations where the habitat is either known to be unsuitable (absence locations) or 
is potentially unsuitable (background locations) [59, 60]. Given the environmental characteristics 
of a location, ENMs estimate a multivariate function that calculates the probability that this location 
provides suitable habitat for a species. This prediction function can be applied on a study area 
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coupled with different climatic scenarios (e.g., future environmental conditions) to produce new 
spatial distributions of habitat suitability probabilities [22, 24, 35, 61–66]. ENMs can therefore 
identify suitable areas for a species [66–69], and be effective even with few data available [47, 
48, 70, 71]. IEA and EM experts appreciate ENM’s simple, automatic, AI-based and Open Science 
features that simplify their integration with large workflows [27, 32]. 

This report summarises the work of WP4-Task 4.3 of the EcoScope project, i.e., the 
automatization of ecological niche modelling with Open Science features, a frequent requirement 
from IEA and EM communities of practice in international projects [72, 73], including EcoScope. 
We present a fully automatic workflow to estimate potential and actual marine species 
distributions based on ENMs. This workflow integrates four complementary statistical and 
machine learning models (i.e., AquaMaps, Maximum Entropy, Artificial Neural Networks, and 
Support Vector Machines). These models are combined in an ensemble model to merge their 
complementary indications for a more stable and reliable distribution. Finally, the ensemble 
models of several species are combined to produce one biodiversity index (or species-richness 
index) representing the total, punctual number of species potentially present in a marine area (i.e., 
the grid-based species richness [74–76]). The workflow can process local to global scale areas 
at coarse to detailed spatial resolutions and extensive batches of species data. One novelty of 
the workflow with respect to other solutions [77] is its full automatism, achieved by searching for 
the optimal parametrisation of each ENM, and the complete integration between the different 
ENMs. Moreover, the workflow automatically estimates the optimal decision thresholds on each 
ENM prediction to distinguish between suitable and unsuitable habitat locations. Another novelty 
is the availability of the workflow as an open-source and Open Science (OS) compliant software, 
i.e., it is available as a standardised Web service integrated with an OS-compliant cloud 
computing e-Infrastructure, enabling experiment repeatability, reproducibility, and cross-domain 
reusability. The cloud computing platform allows for processing extensive batches of species and 
environmental data to quickly produce a multi-species biodiversity index and future projections, 
e.g., under different Representative Concentration Pathways (RCP) scenarios [78]. 

Through specific case studies, we demonstrate the effectiveness of the developed workflow at 
producing a biodiversity index for more than 1500 Mediterranean species. Moreover, we show its 
potential use for (i) predicting alien and invasive species distributions, (ii) estimating the overlap 
between native species and competitor invasive species distributions, (iii) estimating the potential 
influence of climate change on invasions, and (iv) assessing the workflow-output sensitivity to the 
individual ENM contributions. In the case studies, we used RCP projections as future scenarios, 
instead of other projections (e.g., [79]), because we could access robust data from other ENM 
studies [80] and included RCP-based expert-curated distributions in the evaluation [81]. 

Our workflow belongs to big data processing methodologies. Our case studies present typical 
applications involving a vast number of species and a wide study area, yet the training sets for 
our models can be relatively small. When applied to large species-batch processing, it is important 
to view the output of our workflow as the analysis of macro patterns of species richness change 
rather than as detailed, cell- and species-specific answers. An erroneous species presence or 
absence assessment does not significantly impact macroscopic trend analyses. Other studies 
have shown that individual biases have limited influence when numerous models are aggregated 
to analyse overall trends in a study area, because model combinations produce more stable and 
reliable macroscopic knowledge than the individual models [82, 83]. However, it is advisable to 
exercise caution when interpreting the results of our workflow across multiple species, as 
punctually reliable indications cannot be guaranteed. On the other hand, macro-patterns can 
provide crucial information for ecosystem modelling and conservation, such as predicting future 
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biodiversity changes well in advance and planning preventive actions. Our objective is to present 
a framework that, by default, combines models for various species to examine the aggregated 
model’s changes over time and extract viable macro patterns. 

All results were made available as open access data. We used them to feed the EcoScope 
platform developed in WP3 and the other Work Packages and tasks that required them (e.g., WP6 
and WP4-Task 4.4). 
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3 Methods 

This section describes our workflow for generating ENMs, ensemble models, and a biodiversity 
index. The workflow can process from local to global scale areas and easily manage an extensive 
set of species data. It is open source (Section 6) and requires minimal input, i.e., a collection of 
environmental variables (in the form of raster files) and species observation records (occurrence 
points). All options can be managed through a workflow configuration file without changing the 
code. The workflow also has a Web service version with a standardised interface that complies 
with the Open Science directives [28] and allows for concurrently producing many species models 
and quickly estimating biodiversity indices. 

In the following, we describe all components of our workflow, according to the schema reported 
in Figure 1, i.e., data provisioning and pre-processing (Sect. 3.1), the integrated ecological niche 
models (Sect. 3.2), the ensemble model construction (Sect. 3.3), and the biodiversity index 
construction (Sect. 3.4). Moreover, we describe the associated Open Science-oriented Web 
service (Sect. 3.5) and the evaluation methodology used (Sect. 3.6). 

3.1 Data provisioning and pre-processing 

A user of our workflow should prepare a set of raster files of environmental variables in the ESRI-
GRID (ASCII) format, one of the most frequently used formats by ecological and ecosystem 
models [80]. Each file should contain the distribution of one environmental variable (e.g. 
geophysical, oceanographic, or biological) that could be relevant for modelling the species 
response. The raster file should be defined on a regular grid of resolution R over the spatial extent 
of the area under analysis. The grid may contain pixels, i.e., raster cells, where the variable is 
undefined. Only pixels with fully defined variables will be utilised in the ENMs; in other words, we 
exclude raster cells with undefined (NA) values. All files should refer to the same spatial extent, 
have the same spatial resolution (hereafter referred to as R), and use the WGS84 coordinate 
system. The workflow will use these files to set the focus spatial extent and the final model 
resolution. The output is expressed in the resolution of the input variables to avoid introducing re-
sampling biases. The environmental variable files can come from large providers of Findable, 
Accessible, Interoperable, and Reusable (FAIR) data, such as Copernicus [84] and EMODnet 
[85], and other sources [80]. 
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Figure 1: General schema of our workflow. 

As an additional input file, the user should provide a comma-separated-values (CSV) file 
containing coordinate pairs of observations of the presence of a species within the study area 
(presence locations). This file should report one column containing the species scientific name 
(scientific name) and two data columns (longitude, latitude) with observation coordinate pairs (in 
the WGS84 coordinate system). These data could come from large providers of FAIR data of 
species observations, e.g., OBIS [86] and GBIF [87]. Multiple species observation files can also 
be provided, which the workflow will process sequentially. 

The first processing step of our workflow associates a vector of environmental variables to the 
observation points (data enrichment operation). It extracts the variable values from each 
environmental variable’s raster file and associates the value of the closest raster cell to the 
observation coordinates. This operation associates a vector of environmental variable values to 
each observation. 

The workflow then proposes the background sampling strategy described in [88] and other studies 
[89–93] to generate background absence data which potentially represent locations with limited 
suitable, or completely unsuitable, conditions for species presence. This technique consists in 
taking a random sample of locations from the study area’s spatial extent (at resolution R), while 
excluding presence locations, for generating background absences during modelling. If many 
species observations were available from extended surveys in the native area, the background 
sample locations would likely include absence locations [94]. This is the default strategy adopted 
by the workflow. As an alternative to background sampling and in compliance with common 
approaches in ecological niche modelling [60, 93, 95, 96], the workflow also allows users to 
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externally provide reliable species absence (associated with known unsuitable habitat) or pseudo-
absence locations as CSV files. 

Proposing background sampling as the default strategy is particularly useful for user scenarios 
where species absence information is missing, e.g., for processes involving many species. 
Background points cannot substitute absence locations, but they can approximate negative 
examples, especially for nonlinear models such as Artificial Neural Networks, MaxEnt, and 
Support Vector Machines (when using nonlinear kernels) [97, 98]. For instance, MaxEnt can 
produce reasonable distributions, similar to those using reliable absences, while slightly 
overestimating species presence [93]. Overestimation is reduced if the model internally enables 
more complex modelling of the relation between species presence and environmental features 
through hinge features (Sect. 3.2.2) [93]. To further soften overestimation, our workflow offers a 
post-processing algorithm for native areas that reduces the probability of habitat suitability 
locations far from the species presence locations (Sect. 3.2.5). Apart from these considerations, 
the reliability of background samples as absence locations can be verified through techniques 
evaluating how much these locations correspond to entirely different environmental conditions 
than those of the presence locations [80, 93, 99]. 

The data preparation algorithm, for each species to analyse, can be summarised as follows: 

 

Two sets of generated environmental variable vectors ({fp} and {fa}) represent multidimensional 
presence and absence reference environmental vectors. The ENMs will learn to distinguish these 
vectors by tracing hyper-volumes separating them, with some tolerance when using background 
points instead of absence locations. The additional vector set {fg} represents the vectors on which 
the trained ENMs will produce output projections. 
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3.2 Ecological niche models integrated 

This section describes the ENMs integrated with our workflow, i.e., AquaMaps, Maximum Entropy, 
Artificial Neural Networks, and Support Vector Machines. These models simulate the probability 
that a specific location is suitable habitat for a species, given the values of a set of environmental 
variables associated with that location (posterior probability of habitat suitability). Their output, 
over a set of square-sized locations in an area (also outside of the native region), can be 
interpreted as the spatial distribution of the probability that the species could survive in each area 
location (potential species distribution). We also describe an adjustment algorithm that estimates 
actual distribution of a species from its potential distribution when the analysed area corresponds 
to its native region. 

Each integrated ENM can be deactivated (optional) to use only a subset of models, or substitute 
one model with another by other software. All ENMs can work in either training or projection mode. 
In training mode, ENMs internally learn a function relating the species habitat suitability to a set 
of input-provided environmental variables. In projection mode, the previously trained models 
project the function on the gridded environmental data associated with an area or future climatic 
scenarios. 

One principal requirement in the design of our workflow was the necessity to restrict the number 
of ENMs integrated into a small core of models with complementary approaches. This 
requirement, which is also encountered by other ENM frameworks [77], follows the EcoScope 
mission to reach communities of practice in addition to expert ecological modellers. These 
communities needed (i) simplification of input/output through full automatisation, (ii) integration 
between the ENMs, (iii) cross-community usage through Open Science features, and (iv) a 
computationally efficient and effective solution. To this aim, we selected AquaMaps as a 
representative of ENMs adopting a factorised approach in the analysis of the environmental 
variables (similarly to Decision Trees), because it estimates functional relations for one variable 
at a time and eventually combines the functions together (Sect. 3.2.1). We chose Maximum 
Entropy as a representative of Generalised Linear Models (GLMs), because it is equivalent to the 
Poisson regression GLM, which is naturally suited for species distribution modelling (as better 
reported in Sect. 3.2.2). We used Support Vector Machines to include linear, polynomial, and 
other basic nonlinear classification models (Sect. 3.2.4). Finally, we integrated Artificial Neural 
Networks to model up to non-convex functions and simulate very complex ecological niche 
functions (Sect. 3.2.3). In a previous study, we verified that these models actually bring 
complementary information important for improving model robustness [24], i.e., removing one of 
the models would result in lower prediction performance on known species locations. This feature 
was also confirmed by the results of the present work (Sect. 4). In the view of processing extensive 
batches of species data, the simplification strategy adopted by our workflow required to fix the 
default model optimisation strategies of the ENMs to the most commonly used ones, while 
excluding other alternatives [100, 101]. 

3.2.1 AquaMaps 

AquaMaps [102] is a presence-only ENM that incorporates scientific expert knowledge to account 
for known biases and limitations of marine species occurrence data [103]. The models’ name 
corresponds to two model implementations estimating the actual (AquaMaps-native) and potential 
species habitat distributions (AquaMaps-suitable). The main difference between the two models 
is that AquaMaps-native restricts the distribution to the areas where the species is known to live. 
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AquaMaps can produce regional to global scale distributions at a 0.5° resolution. The algorithm 
models the association between the observed locations and the environmental variables as the 
multiplication between mutually independent envelope functions, each traced on one 
environmental variable at a time. The envelope function is a trapezoidal function, normalised to 
1, traced over the quartiles of the density of one variable values over the observations [104]. A 
positive slope (starting from 0) connects the 1st and 2nd quartiles, a flat region with 1-value lies 
between the 2nd and 3rd quartile, and a negative slope from the 3rd quartile ends at 0 at the 4th 
quartile. A location whose associated environmental variable values fall in the flat regions of all 
envelope functions will have a habitat suitability probability equal to 1. If the values fall outside of 
all envelope function values, the location will have 0 habitat suitability probability associated. 
AquaMaps also applies mechanistic assumptions as rule-based sub-routines to revise the 
estimations. The default input environmental variables used by the algorithm are (i) sea-bottom 
and sea-surface temperature, (ii) distance from land, (iii) maximum, mean, and minimum depth, 
(iv) net primary production, (v) sea ice concentration, (vi) sea-bottom and sea-surface practical 
salinity, (vii) and sea-bottom moles of oxygen per unit of mass. 

AquaMaps produces reasonably good results if compared to more complex approaches, but it 
often requires the bounding boxes and envelope functions to be revised by an expert [103]. One 
main advantage of this process is that it does not require optimisation, because expert-provided 
rules are embedded within the code and environmental variable quartiles are automatically 
extracted from the data. 

AquaMaps can work with environmental variables projected for the short- and long-term future 
under different RCP scenarios. The AquaMaps Web site publishes expert curated projections for 
2050 and 2100 under the RCP8.5 and RCP4.5 scenarios [81, 105], which represent valuable 
references to evaluate other models projections. We integrated AquaMaps as an R procedure, 
re-programmed from the original PHP algorithm code. We also included the expert defined sub-
routines in our re-implementation. However, to fully exploit the quality of the AquaMaps models in 
our case studies, we used the expert-revised distributions from the AquaMaps Web site, when 
available (Sect. 3.6). Users of our workflow can import the AquaMaps files to use them instead of 
our implementation (Sect.3.3). 

3.2.2 Maximum entropy 

Maximum Entropy (MaxEnt) is a machine learning model frequently used in ecological modelling 
[48, 94, 106–112], which estimates a function π ( 𝑥̅) interpretable as the probability of species 

habitat suitability given the vector of environmental variables 𝑥̅. This function has two principal 
constraints: (i) it has to comply with the mean values at the species presence locations, and (ii) 
its associated entropy function (H = −Σ π (𝑥̅) ln(π (𝑥̅)) ) should be at maximum [94, 95, 113]. MaxEnt 
performs a relative maximisation of the entropy function on the presence locations with respect 
to the entropy function on the background points [106]. It builds the π(𝑥̅) function to represent the 
complex relation existing between specific environmental variable combinations and the species 
habitat suitability [24, 33]. One advantage of this model is that it works well also when only species 
presence data are available (i.e., without absence data). However, it is over-sensitive to biased 
presence and environmental data [48, 114] and might overfit small datasets [113, 115]. MaxEnt 
can be preferred over linear and logistic regression because it is equivalent to a Poisson 
regression (a GLM), a model naturally suited for modelling the probability of a number of events 
occurring in a fixed space such as species occurrences [116]. 
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During the training phase, MaxEnt estimates the coefficients of a linear combination of the 
environmental variables, which is the core of the π (𝑥̅) function corresponding to maximum entropy 
[95]. These coefficients represent the variables weights in the species environmental preferences 
(named per cent contribution). We integrated a MaxEnt implementation by Phillips et al. [117] 
within our workflow. Our workflow configuration file also allows setting the species prevalence, 
i.e., the prior species occurrence probability in the area, which MaxEnt uses for modelling π(𝑥̅). 
This parameter is set at 0.5 (uninformative) by default, assuming that no prior information is 
available for the species presence in the area and the model should entirely rely upon the data. 

To reduce model overfitting issues, we followed the heuristic indications of other studies on 
MaxEnt parametrisation [94, 117–120]. We allowed the inclusion of presence points among the 
background points and included different types of hinge features in the π(𝑥̅) function to model 
complex species response to the environmental variables as alternatives to linear combination. 
The MaxEnt software we used indeed allows combining the environmental variables within π(𝑥̅) 
through simple-to-complex functions (hinge functions) to model species-environment relations. 
We configured the software to exhaustively test hinge functions among linear (the standard 
combination), quadratic, product, and threshold functions, and all their combinations. Eventually, 
the software selects the configuration producing the highest Area Under the Curve (AUC) [113]. 
AUC is the integral of the receiver operating characteristic (ROC) curve that reports the true-
positive rate vs false-positive rate using various decision thresholds on the model output. An AUC 
value close to 1 indicates high-quality model training, whereas an AUC close to 0 indicates low-
quality model training. Depending on the representativeness of the presence and background 
points, the AUC and optimal hinge function can change across different MaxEnt runs but are 
mostly stable with high-quality data [48]. 

3.2.3 Artificial neural networks 

Artificial Neural Networks (ANNs) are machine learning models constituted by interconnected 
representations of biological neurons [121]. ANNs are extensively used in ecological modelling 
[122–126], because they allow for modelling complex, nonlinear functions [127]. ANNs can also 
perform classification by discretising their output values over different classes [128]. In Feed-
Forward Neural Networks [129] (used in our workflow), the digital neurons are organised into 
“layers”. The first layer receives and processes the input vector directly; the last layer produces 
the output vector; and intermediate layers (“hidden layers”) process the in-between information. 
One layer is fully connected only to the next layer through weighted edges, i.e., a neuron in one 
layer is connected to all neurons of the next layer. An ANN can be trained on known data acting 
as examples. A learning algorithm (e.g., “backpropagation” [130]) adjusts the edge weights to 
produce the expected output on the training data. To assess prediction accuracy, a trained ANN 
can be used to produce estimates on known input data not included in the training set (test data). 
The optimal number of hidden layers and neurons can be found by testing different topologies 
[131], e.g., by adding neurons and layers as far as the error on the test set decreases (“growing” 
strategy [128]). One drawback of ANNs is that they do not provide the analytical form of the 
simulated function combining the input variables. Unlike traditional mathematical models that yield 
an explicit equation describing the relationship between input and output variables, ANNs operate 
as complex, interconnected systems of neurons, and the mapping between inputs and outputs is 
hardly expressible in a concise mathematical form. The lack of a readily interpretable analytical 
expression can make it more difficult for researchers and practitioners to gain a direct, intuitive 
understanding of the underlying relationships encoded within the ANN. Moreover, the ANN 
performance can be sensible to the network weight initialisation.  
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We integrated ANNs through the neuralnet R package [132]. The ANN-based ENM has one input 
per environmental feature and one output neuron producing a number between 0 (unsuitability) 
and 1 (high suitability). If externally provided absence locations were available, the ANN will use 
them as a reference for unsuitability. Otherwise, it will approximate unsuitable environmental 
conditions using the background points described in Sect. 3.1 (similarly to ANN-based 
approaches in other domains [98, 133]). 

As the default strategy to automatically select the optimal ANN topology, our workflow splits the 
training set into 10 parts. It iteratively trains the ANN with 9 parts and tests it with the remaining 
part (tenfold cross-validation). Our workflow uses a “growing” strategy to identify the optimal 
number of hidden neurons and layers achieving the highest average cross-validation accuracy. 
As the default configuration, our workflow tests between one and two hidden layers and from 10 
to 200 neurons in each layer. This configuration results from our previous works estimating and 
testing the range of layers and neurons typically required to process species observation data 
from OBIS and GBIF without overfitting the model [22, 47, 48, 134]. The validity of this 
configuration was also tested on the case studies of the present deliverable (Sect. 3.6). This setup 
is unsurprising because a two-hidden layer ANN can simulate any multivariate nonlinear function 
and complex classification regions in the input space [128, 135, 136]. Nevertheless, the number 
of layers and neurons can easily be changed from the workflow configuration file to test more 
complex architectures.  

We used cross-validation due to the high variability of the number of species occurrence records 
our workflow could encounter during an extensive species-batch process. The number of 
occurrence records depends on many factors, such as the sampling frequency and extent of 
scientific surveys, species commonness, and population change over time. Therefore, the number 
of presence points is normally low unless a species is widespread, frequently observed, and 
frequently targeted by scientific surveys. As we observed in our Mediterranean Sea case study, 
the number of occurrence records across a set of many species follows a log-normal-like 
distribution, with most species having few occurrences associated (10–500) and fewer species 
having many occurrences associated (over 1000–10,000). Since our aim was to provide a solution 
for processing large batches of species data, we adopted cross-validation as a strategy commonly 
used by other ENMs that could work for both data-poor and data-rich cases [93]. 

3.2.4 Support vector machines 

Support Vector Machines (SVMs, [137]) are a machine learning method frequently used to build 
binary classifiers, also in ecological modelling [24, 138–142]. The method projects the input data 
onto a higher-dimensional feature space through a kernel function. Then, it searches for a linear 
separation of this space into two regions. The training algorithm searches for the optimal 
separation hyperplane maximising the distance (margin) of the training vectors of different classes 
from the hyperplane. The closest training vectors to the margin are named support vectors. The 
SVM training process searches for the optimal hyperplane and the largest margin through a fast 
optimisation algorithm. The requirement to sharply separate the two classes can be relaxed – to 
avoid overfitting – by allowing some classification error through cost weights [143]. After training, 
the distance of a vector from the separation hyperplane can be used to simulate a probability 
function. An output value of 1 corresponds to a vector confidently falling in the region above the 
hyperplane (interpreted as suitable habitat in our ENM). Conversely, a 0-output value corresponds 
to a vector well below the hyperplane (unsuitable habitat). During the projection phase, an SVM 
receives an environmental variable vector, transforms it through the kernel function, and 
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calculates its belonging class. Then, it assigns a score between 0 and 1 according to the 
normalised distance from the hyperplane within the belonging class. 

SVMs require an accurate parametrisation to optimise vector separability. We integrated the SVM 
implementation of the e1071 R package [144]. This software can manage four kernel function 
types (linear, polynomial, radial, and sigmoid) with different parametrisations. Moreover, it allows 
adjusting penalties (costs) for misclassifications during training to reduce data-overfitting risk. Our 
workflow tests all supported kernel functions with multiple parametrisations. Specifically, it tests 
the performance of linear, three- and four-grade polynomials, and the radial and sigmoid functions 
with their gamma parameter ranging between 10−3 and 102. Moreover, it tests all cost values 
between 10−3 and 102. During training, the workflow conducts a tenfold cross-validation for each 
configuration and eventually selects the optimal parametrisation (i.e., the optimal kernel function, 
parameters and costs). The workflow configuration file includes a section that allows the kernel 
functions to be selected and the parameter ranges to be changed for testing different 
parametrisations. 

3.2.5 Native distribution adjustment 

The integrated ENMs estimate the potential species habitat suitability on a projection grid. 
However, within the spatial extent of the native area, some species might only inhabit a subset of 
all suitable-habitat locations. This could be attributed to factors such as geographical obstacles 
or environmental hindrances preventing access to certain areas. The exact knowledge of these 
hindrances would require specific analyses of species behaviour and native area, which are 
usually unavailable to ENMs. The native distribution indeed corresponds to the actual distribution 
in the native bounding box only if complete knowledge about the environmental conditions for the 
species existence is available and correctly captured by ENMs [103].  

Knowledge gaps, often present in practical applications, can create a significant discrepancy 
between species native and actual distributions [60]. Therefore, an enhancement of the native 
distribution estimation is required to include the effects of other unknown variables regulating 
species presence in the area. Such refinement can approximately be obtained by analysing 
observations of species distribution instead of searching for additional environmental variables.  

For instance, when a reasonable number of species observations is available, spatial distribution 
of these observations implicitly indicates if the species is spread across the territory, or localised 
in specific regions [145]. Thus, if a species was localised in a coastal area, observations of species 
presence would likely present accumulation regions close to the coast and fewer, less dense 
points far from the coasts. Therefore, an analysis of the distribution of minimum distances 
between the observations could indicate if we can expect species observations very far from the 
available observations.  

Our workflow approximates the distribution of the mutual distances between the observations as 
a log-normal distribution to create a decay weighting function for species presence in the native 
area. The log-normal shape of this distribution derives from our previous heuristic analyses of the 
OBIS data [24, 145]. This shape is not an ecological property of species, but depends on the 
partial, sampled species information contained in large observation-data collections [60, 146, 
147]. Distances below the upper confidence limit of this distribution can be considered plausible 
for observing the species. Conversely, distances higher than the upper confidence limit can be 
classified as too far (i.e., less plausible). The log-normal distribution can be used for these 
locations as a multiplicative decay function for the ENM probability function. This way, the 
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locations far from areas with a high observation density are assigned a lower habitat suitability 
probability. 

In other studies, we have demonstrated that this technique can effectively simulate geographical 
reachability from habitat suitability [24, 44]. Our workflow thus produces a new weighted ENM 
distribution by multiplying the too far ENM output values with the decay function value. This new 
ENM distribution approximates the native species distribution. The workflow user can activate this 
native-distribution adjustment of the potential habitat distribution through the workflow 
configuration file. 

The algorithm can be summarised as follows: 

 

This algorithm adjusts the less plausible ENM values through a log-normal decay function and 
eventually overwrites the previous ENM output files with the new values. Since the algorithm does 
not process environmental variables, we added it as an optional adjustment for native distributions 
instead of including it as an additional ENM. 

3.3 Ensemble model 

Our workflow executes all ENMs concurrently and generates one spatial distribution of habitat 
suitability for each, in the ESRI-GRID (ASCII) format. The workflow also produces one metadata 
file for each model, indicating the optimal model variables and the optimal decision threshold for 
dichotomic classification (suitable/unsuitable habitat). This threshold, which is likely different for 
each ENM, is the cut-off value maximising the prediction accuracy of the optimal model. It allows 
assessing the R-squared cells (grid pixels) corresponding to suitable (1) and unsuitable (0) habitat 
for each ENM. Specifically, the workflow selects the numeric threshold, over the optimal model, 
that maximises the separation of the training presence and background locations into suitable 
and unsuitable locations, respectively. For this task, we use a similar strategy to ROC curve and 
AUC calculation [93], i.e., we vary a numeric threshold over the outputs of the optimal model on 
the training set and eventually select the value corresponding to the highest prediction accuracy. 
The workflow uses this strategy for all models. We preferred it to alternative thresholds – e.g., 
omission-sensitivity balance, equal sensitivity-specificity, and others [148] – which would have 
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required specific prior knowledge on model performance for each species data and area, normally 
unavailable for large sets of species. 

Based on this binarisation, as a further computational step, our workflow generates an ensemble 
distribution that takes advantage of the complementary properties between the models, 
consequent to their likely different functional forms and training processes [24]. For this task, our 
workflow sums the corresponding pixel binary values. This operation generates an ensemble 
model ready for a consensus-based model like the biodiversity index model described in the next 
section. This approach is compliant with general consensus-based classifiers [149–153] and 
simulates different experts assessing species presence cell by cell. The underlying assumption is 
that each model produces independent assessments of species presence because they use 
different rationales, resulting in independent probability distributions. Other works on weighted-
averaging machine learning have indeed demonstrated that such distributions – especially those 
of nonlinear models – are hardly comparable and often have forms not associable with known 
probability distributions [24, 82, 126, 154, 155]. Averaging their values might bias the results 
towards the sharpest distributions, whose high values do not necessarily indicate high model 
confidence and robust training. Overall, we use the sum of the binarised models as the sum of 
mutually independent probabilities. On the one hand, this strategy loses definition in assessing 
the ensemble probability over the area. On the other hand, it prevents the production of biased 
results due to the combination of too different probability distributions. 

One critical point of this ensemble strategy is that it assigns equal weights to all models, with the 
rationale that suitability could be due even to one distribution estimating a high probability. This 
choice depends on the fact that the default configuration of our workflow mainly addresses the 
production of a species richness index based on a large set of species. It is therefore conceived 
for feeding other processes that aim to discover macro-patterns of species richness change over 
time and space. Discovering macro patterns is in fact more affordable than producing accurate 
cell-wise assessments [83, 156]. Reliable patterns can indeed emerge from the statistical 
aggregation of many model outputs, even if these contain individual biases. The biases are 
blurred when several models are aggregated and can fade away when overall trend discovery is 
the target of the analysis. In this view, assigning the same weight to every model means assuming 
we miss prior information about the optimal model(s) for each species, which is a common 
condition for large species batches. Therefore, and considering that the involved models likely 
bring complementary information (Sect. 3.2), we assigned the same weight to every model as the 
default workflow configuration. Nevertheless, our tool allows the modification of model weights in 
the ensemble when prior information on model performance is available. 

The algorithm to build the ensemble model can be summarised as follows: 
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This algorithm produces one spatial distribution (in the ESRI-GRID format, at resolution R) 
reporting the pixel-by-pixel total number of models that indicated suitable habitat in the focus area 
(ensemble model). 

The ensemble model construction algorithm can also integrate new models or alternative versions 
of the integrated ENMs. This modular design allows for easily extending the number and types of 
models to combine. During the data import phase, the algorithm can read the ESRI-GRID output 
files of other ENMs, with plain text metadata associated, to include these distributions in the 
ensemble. We also provide conversion tools (Section 6) to transform plain CSV files (with 
longitude, latitude, probability columns) containing species distribution information into integrable 
data. This procedure allowed us, for example, to integrate the official, expert-curated AquaMaps 
distributions in some evaluation cases instead of the automatically estimated ones (Sect. 3.6). 

The ensemble model can be used to estimate an overlap index between multiple ensemble 
models. This index estimates the number of different, punctual, overlapping species habitats. Our 
workflow performs this operation by transforming the species ensemble habitat distributions into 
binary distributions (suitable/unsuitable habitats) and then summing them pixel by pixel. One valid 
heuristic to transform the ensemble distribution into a binary distribution considers the agreement 
between the component models [24]. If at least three of four models indicate suitable 
environmental conditions for the species in a grid pixel, this location can overall be classified as 
suitable habitat. As a generalisation, because the number individual models can be changed in 
our workflow, the minimum agreement between the ENMs for assessing potential distribution is 
“number of models − 1”. In the case of only one model used, the minimum would be 1. This 
threshold can be reduced to set more relaxed habitat suitability assessment conditions. For 
example, a one-model threshold would allow identifying locations with minimal potential habitat 
suitability. 

3.4 Biodiversity index  

An overall cross-species overlap index is obtained by summing the binary ensemble model 
values. This index measures the number of different species potentially living in each pixel of the 
analysed area, i.e., it can be used as a proxy for a biodiversity index (alternatively, a species 
richness index). Although this index does not consider species mutual interactions, it can be 
demonstrated that this type of approach can produce reliable biodiversity information for long time 
frames (e.g., over one year) [33, 35]. 
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The biodiversity index construction algorithm can be summarised as follows: 

 

This algorithm produces one spatial distribution (in the ESRI-GRID format, at resolution R) 
reporting the pixel-by-pixel total number of species ensemble models indicating suitable locations. 
This is the final result of our workflow. 

3.5 Open science-oriented web service 

We developed our workflow as an open-source R software suite (Section 6). The software 
availability as a suite (internally using almost R-base packages only) instead of a CRAN package 
increases its integrability, maintenance, and long-term compatibility with multiple versions of R. 
This choice also made it easy to publish the workflow as a Web service supporting secure cloud 
and parallel-processing and Open Science-oriented features [28]. To this aim, we integrated our 
workflow with the DataMiner cloud computing platform of the D4Science e-Infrastructure [49, 157–
159], which published the process under the Web Processing Service standard of the Open 
Geospatial Consortium (OGC-WPS [160]) (Section 6). This standard allows for direct integration 
of the process with widely used geospatial data processing software supporting it (e.g., QGIS and 
ArcGIS) [32]. DataMiner automatically produced a graphic user interface based on the software 
input/output definitions. It also tracks the model parameters, input and output data at each 
execution (computational provenance) in a user’s private data space as XML documents following 
the Prov-O ontological specifications [161]. Provenance tracking is crucial for computational 
repeatability, reproducibility, and experimental history tracking [162, 163]. Through D4Science, 
the users can also share the computational provenance, compare and merge different results, 
and collaborate during the experimentation [164]. All these features helped us meet Open Science 
requirements of software reusability across different application domains and enhanced the 
reproducibility and repeatability of the experiments [28]. 

The workflow Web interface requires uploading a ZIP-compressed file containing a set of raster 
files, in the ESRI-GRID (ASCII) format, each representing the distribution of an environmental 
variable associated with species ecological niche in a focus area. These files can come from open 
repositories of geospatial data (e.g., Copernicus, EMODnet, or others [80]). The files should all 
be at the same spatial resolution. As an additional input, our workflow requires providing a list of 
observations for one species as a CSV file (with scientific name, longitude, latitude columns) that 
it will enrich with environmental variable values to train the models. All files should be uploaded 
on the D4Science platform-integrated distributed storage system [159]. The workflow can be 
executed either through a WPS-HTTP (POST/GET) call [158, 160] or the online Web interface.  
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The workflow produces one ZIP-compressed file containing (i) all ENM distributions as ESRI-
GRID (ASCII) files, (ii) their metadata as plain text files, (iii) the trained models as binary R files, 
and (iv) the ensemble model as an ESRI-GRID (ASCII) file. The biodiversity index distribution can 
be obtained as an additional ESRI-GRID (ASCII) file by running the workflow script to assemble 
several ensemble models. The script should be executed with only the biodiversity index 
construction algorithm activated in the workflow configuration file. 

The open-source R software allows customising all workflow variables through the configuration 
file, e.g., all variable ranges used during model optimisation, the number of background points to 
sample or the alternative absence locations to use, and the minimum ensemble-agreement 
threshold for the biodiversity index (Section 6). 

Hosting our workflow on the DataMiner allowed distributing the executions for multiple species on 
a cloud of 15 machines equipped with Ubuntu 18.04.5 LTS x86 64 operating system, 16 virtual 
cores, 32 GB of Random-Access Memory, and 100 GB of disc for each machine. Each machine 
managed up to 4 executions simultaneously (i.e., 15×4 = 60 concurrent executions). This 
integration allows processing the data of many species concurrently because the DataMiner 
automatically distributes the single-species requests across the machines while balancing the 
computational load. Eventually, the workflow can assemble the cloud computation results within 
one biodiversity index. This way, it took ∼5 hours to produce a biodiversity index for 1508 
European marine species with full automatic model optimisation (Sect. 4.2), instead of the ∼7 
days required by sequential processing. 

3.6 Evaluation methodology 

We evaluated our workflow through four different case studies. First, we evaluated the change in 
the individual and ensemble models results across repeated executions (Sect. 4.1). We selected 
all species for which the AquaMaps [105] and FishBase [165] open repositories presented 
observations and maps in European marine basins (1508 species, including fishes and non-
fishes) with local-to-widespread distributions. We estimated the stability of the ENMs, ensembles, 
and biodiversity index on this large species set, in terms of the sensitivity of their convergence to 
the same solution after model initialisation. The ENMs parametrisation, internal topologies, and 
results indeed depend on (i) the model initialisation (e.g., ANN weight initialisation, background 
point selection, etc.), (ii) the quality of the observation and environmental data, and (iii) the 
quantity and density of the species observations.  

Our first case study assessed how much these factors influenced the individual ENMs and 
whether the ensemble and biodiversity index models mitigate variability issues. To assess model 
stability, we repeated 10 executions and evaluated the percent number of species distributions 
remaining almost stable, i.e., producing the same binary assessments for at least 60% of the grid 
pixels. 

In the second case study, we produced a biodiversity index for the Mediterranean Sea based on 
the 1508 selected European species to demonstrate the capacity of our workflow to process large 
sets of species data through cloud computing (Sect. 4.2). We integrated expert-reviewed 
AquaMaps [81] for this assessment to improve output reliability and demonstrate the integrability 
of externally provided model outputs. 

The third case study studied the invasion of the Mediterranean Sea by Siganus rivulatus, a 
Lessepsian species currently invading the basin (Sect. 4.3). The distribution of this species often 



 EcoScope Deliverable No. 4.3 

 

ecoscopium.eu | @ecoscopium                     

 

25 

overlaps with the native Sarpa salpa. The two species can coexist but S. rivulatus tends to 
consume the habitat resources with consequent risks for S. salpa survival [166]. To estimate 
habitat distributions in the Mediterranean, we used a native-adjusted model for S. salpa and a 
potential distribution model for S. rivulatus. The training-set locations were taken from their 
respective native areas. We studied the accuracy of our individual and ensemble ENMs at 
predicting the current observation records of S. rivulatus reported in OBIS in the last ten years 
(153 observations), and the potential change of habitat distribution in 2050 and 2100 under the 
RCP4.5 and RCP8.5 scenarios [78]. We also calculated the percent overlap (as the fraction of 
shared high-suitability locations) between the S. salpa and S. rivulatus distributions to estimate 
overlap change over time and whether climate change will favour the invasion. We did not use 
AquaMaps in this case study because expert-curated data were unavailable for S. rivulatus across 
the RCP scenarios. 

In the final case study, we analysed the correspondence between expert studies and the 
estimated ensemble distributions of S. rivulatus to assess the overall reliability of the identified 
high habitat suitability locations (Sect. 4.4). 

All ENMs used the same set of environmental variables at a 0.5° resolution over the 
Mediterranean Sea [80], produced in WP4-Task 4.1, i.e.: 

1. Sea-bottom and sea-surface temperature (°C) 
2. Distance from land (km) 
3. Maximum, mean, minimum depth (m) 
4. Net primary production (mgC m−3 day−1) 
5. Sea ice concentration (0–1 fraction) 
6. Sea-bottom and sea-surface practical salinity (PSU) 
7. Sea-bottom moles of oxygen per unit of mass (μmol/kg) 

We also used projections of these variables in 2050 and 2100 [80] under the RCP4.5 and RCP8.5 
future scenarios for case study 3. These variables are also used by the official expert-revised 
AquaMaps distributions, which the AquaMaps Consortium considers as containing sufficient 
information for general habitat suitability assessments [167]. 
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4 Results 

4.1 Sensitivity analysis 

Table 1 reports the average percent number of species distributions remaining almost stable 
(matching percentage) across several executions of (i) the integrated ENMs, (ii) the ensemble 
model, and (iii) the biodiversity index. This table assesses our workflow’s sensitivity to model 
initialisation and background point selection: 66% ANN distributions remained stable, whereas 
the other ENMs presented much higher stability (between 90 and 100%). The lower ANN stability 
was probably due to its over-sensitivity to using background points as a proxy for habitat 
unsuitability [33, 60, 168]. Since AquaMaps is independent of initialisation and has no model 
parameters to optimise (Sect. 3.2.1), it reached a 100% matching percentage. 

Table 1. Average number of matching species distributions after 10 consecutive workflow 

executions on 1508 European species data, across the integrated ecological niche models, their 

ensemble model, and the biodiversity index. 

 

It is worth noting that although the ensemble model was obtained from ENMs with 66 to 100% 
matching percentages, it reached a 96% matching percentage. This result demonstrates the 
capacity of the ensemble model to compensate for instability by leveraging model complementary 
aspects, in agreement with other studies on ENM combinations [169–171]. 

The biodiversity index further improved this stability, reaching a 100% matching, i.e., it was 
independent of ENM initialisation and background point selection. 

4.2 Mediterranean biodiversity index 

The biodiversity index calculated from the ensemble distributions of 1508 marine species 
represented a species richness overview of the Mediterranean Sea (Figure 2). Coasts presented 
a higher index than the basin’s centre, in agreement with other studies [172]. Since the biodiversity 
index depends on species distribution models rather than on species observation density, this 
result is unlikely subject to observation sampling biases. 

The highest index values were in the western Mediterranean and decreased eastwards, as also 
highlighted by other studies [173, 174]. This gradient likely depends on the extensive range of 
physicochemical water conditions suitable for many organisms in the western region and the influx 
of Atlantic species [174]. In the rest of the basin, higher index values were mainly present in the 
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Adriatic Sea, the Strait of Sicily, and the Aegean Sea, which agreed with other assessments [174–
176]. The Strait of Sicily is indeed a crucial biodiversity hot spot because of its border location 
between the Eastern and Western Mediterranean [176]. As for the Adriatic, although it has areas 
with freshwater presence having less biodiversity richness [174], it is indeed an overall biodiversity 
hot spot [177, 178]. Finally, the Eastern Mediterranean showed lower levels of species richness 
in our map, still in agreement with other studies [174, 179]. 

 

Figure 2. Biodiversity index (species richness) at half-degree resolution, produced by our workflow 
after processing 1508 Mediterranean species data. 

4.3 Quantitative evaluation of species invasion prediction 

The ensemble model distribution reached a high accuracy across all scenarios (80%) at predicting 
the locations where Siganus rivulatus is present (Figure 3). This result indicates that the ensemble 
model valuably reused the complementary output information of the individual ENMs. Indeed, 
SVMs and ANNs underestimated the presence locations (40% and 45% accuracy, respectively), 
whereas MaxEnt (80% accuracy) strongly contributed to improving the ensemble model accuracy. 
The gap between model accuracy persisted across the RCP scenarios. The ensemble model 
covered increasing pixels across the years and RCP scenarios (with a slight reduction in 2050 
under RCP8.5). This observation suggests that climate change in the worst scenario (RCP8.5) 
will likely favour the invasion. The ensemble model could not predict some pixels in the Western 
Mediterranean. Rather, it predicted that the habitat would remain unsuitable far from the coasts 
in this area. 
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Figure 3. Accuracy comparison between three individual ecological niche models integrated with 
our workflow—i.e. Artificial Neural Networks (ANN), Maximum Entropy (ME), and Support Vector 
Machines (SVM), and their Ensemble model—in the prediction of the Siganus rivulatus 
distribution in the Mediterranean Sea in 2019. Projections for 2050 and 2100 are reported for the 
RCP4.5 and RCP8.5 scenarios. Small green dots report the S. rivulatus observations from OBIS. 
Red areas indicate high habitat suitability regions, where the model values exceed the optimal-
classification threshold. 

The ensemble models also predicted that the overlap between the ensemble distributions of S. 
rivulatus and S. salpa will progressively increase from 2019 to 2100 (Figure 4). In the RCP8.5 
scenario, there would be an overlap increment of 6.7% in ∼30 years (from 70 to 75.3%) and of 
25.6% in ∼80 years (from 70 to 78.9%) with respect to 2019. Instead, in the RCP4.5 scenario, 

there would be an increment of 7.6% in ∼30 years (from 70 to 74.4%) and 12.7% in ∼80 years 
(from 70 to 87.9%). This result confirms the prediction of a long-term fostering of the invasion by 
climate change, and comparable effects in the shorter term despite greenhouse gas emission 
mitigation [35, 180]. 

 

Figure 4. Per cent overlap between the estimated distributions of Siganus rivulatus and Sarpa 
salpa in 2019, 2050 and 2100. Future projections are reported for the RCP4.5 and RCP8.5 
scenarios. Small green dots report the S. rivulatus observations from OBIS, and purple dots those 
of S. salpa. 
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4.4 Qualitative evaluation of species invasion prediction 

Our ensemble model identified high-suitability areas for S. rivulatus confirmed by expert studies 
on the eastern Mediterranean Sea, e.g., off the coasts of Turkey [181], Egypt [182], Cyprus [183, 
184], Crete [184], and Israel [185, 186]. Stable species presence has been reported in other 
locations also predicted by our model, e.g., off the Albanian [187] and eastern Greek coasts [188]. 
In the central Mediterranean Sea, the northernmost observation from expert studies is near the 
Bobara Island (south-eastern Adriatic) [189], and the westernmost is near the Pelagie Islands 
(Strait of Sicily) [190]. Our ensemble model also predicted habitat suitability in these locations 
(Figure 3). Additionally, in the Strait of Sicily it foresaw a particular increase of habitat suitability 
over the years. 

S. rivulatus has been rarely reported in the western Mediterranean Sea. Presence off the French 
coasts could only be inferred through eDNA analysis in ports [191] and has been unofficially 
reported by fishers [192]. One observation off the western Corsican coast was just indirectly 
inferred from a picture [193]. These considerations, and the low observation frequency, might 
confirm a low habitat suitability in this area in agreement with our model’s suggestions. 

Our model indicated low habitat suitability also far from the northern Tunisian coasts. However, 
two expert observations are available in this area from a transect report [188]. Nevertheless, also 
Siganus luridus might be present in the area [194], which can be mistaken for S. rivulatus given 
their similarity. The S. luridus distribution often overlaps with that of S. salpa [193], and the species 
outcompetes S. rivulatus when present in the same area [195]. In a similar case, in Malta, the S. 
rivulatus observations were indeed re-classified as S. luridus observations after expert verification 
[196]. 
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5 Concluding remarks 

We have presented an automatic workflow, developed in the context of WP4-T4.3, to produce 
potential and actual species distributions over a marine area, through four integrated ENMs with 
complementary aspects. The workflow combines the ENMs to produce one overall ensemble 
model, which is more stable and accurate than the individual models. The ensemble model has 
a lower sensitivity to initialisation and background point selection and a higher predictive accuracy 
than the individual ENMs. 

We demonstrated the workflow reliability through use cases. The workflow allowed for predicting 
the invasion of the Mediterranean Sea by an invasive Lessepsian species (S. rivulatus) and its 
current and future distribution overlap with a native competitor species (S. salpa). The ensemble 
model was particularly reliable at predicting known presence locations of the invasive species in 
the Mediterranean with a large agreement with expert studies. The invasion assessment was also 
projected in future (2050 and 2100) medium and high greenhouse gas emission scenarios 
(RCP4.5 and RCP8.5). The projections highlighted that climate change will likely foster the 
invasion of the basin by S. rivulatus and increase its distribution overlap with S. salpa, especially 
in the RCP8.5 scenario. Therefore, climate change would increase the risk of S. salpa habitat 
loss, which in turn will have an impact on fisheries in the Mediterranean. 

We have also demonstrated the possibility of easily producing a biodiversity index for many 
species through cloud computing, which was (i) independent of the initialisation of individual 
ENMs, (ii) more stable than the species ensemble models, and (iii) in agreement with expert 
studies. 

Our workflow is general enough to process the data of other areas, species, and scenarios than 
those presented in the case studies. Moreover, it can integrate the outputs of additional ENMs. 
Its Open Science compliance makes it easily integrable with GIS software and the EcoScope 
WP3 platform and improves communication transparency towards result stakeholders (e.g., 
ecological and ecosystem modellers and policymakers) [9–11, 29–31]. This compliance, 
combined with the use of general models, allows for reusing the workflow in other domains than 
marine science. For example, it might be used for terrestrial species (using AquaMaps as a pure 
envelope function estimator or disabling it, in this case) [19, 66, 111]. We also plan to extend the 
workflow with new general ENMs, while distinguishing data-poor and data-rich scenarios to 
optimise model effectiveness and stability. 

One essential aim of our workflow is to extend the use of ENMs to heterogeneous communities 
of practice, even with low expertise in ecological niche modelling. Open Science compliance and 
full automatism support this goal. Drawbacks are the default integration of a small (but 
representative) number of ENMs using complementary approaches and the use of pre-defined 
model optimisation strategies as the default configuration. However, our workflow is quickly 
integrable with other software using alternative ENMs and evaluation strategies. Additionally, its 
customisation allows for producing single-species models with high accuracy because expert 
modellers can easily modify all parameters and processing steps. Specifically, the workflow 
configuration allows for modifying many model parameters (such as the ANN layers, the MaxEnt 
parameters, and the SVM kernels), and the modular open-source architecture of the software 
allows for quickly changing specific scripts that implement precise workflow steps. For example, 
model combination weights in species richness estimation can easily be changed to assign more 
importance to specific models. 
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Our workflow should be contextualised within big data processing approaches. In our case 
studies, the number of species and the study area were extensive, but the model training sets 
were relatively small. The results should be considered as the bases of more complex analyses 
such as those of WP6. They indicated macro-patterns of species richness and habitat change 
rather than cell- and species-wise detailed answers. Although an erroneous or missing indication 
of one species’ presence in a cell is not essential in macroscopic trend analyses [83, 170, 171], 
caution should be used when interpreting the results of our workflow over many species because 
punctually reliable indications cannot be guaranteed. 

The full automatism makes our workflow suitable for supporting IEAs and EMs in the automatic 
discovery of the mutual relations between the different driving forces stressing an ecosystem [3, 
5, 197]. This is a crucial focus also of modern designs for Digital Twins of the Ocean (DTOs), 
which aim to produce digital representations of oceanic ecosystems that use real-time and 
historical data to assess and forecast ecosystem status [27]. These models are attracting 
scientific interest but require new automatic solutions (possibly AI-based) for modelling and 
discovering ecosystem functions and assessing habitat suitability. Our workflow meets these 
scopes, and we plan to propose its use in the DTO context. 
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6 Code, service, and data availability 

6.1 Code and service availability: 

The source code and all experiment inputs and outputs presented in this deliverable are available 
in GitHub at https://github.com/cybprojects65/EcologicalNicheModellingWithR 

The software was tested with R 4.2.3 on the MS Windows and Linux Operating Systems. 

The GitHub repository contains all evaluation experiments’ input and output and the conversion 
tools used. It also includes the list of 1508 species used in our biodiversity index for the 
Mediterranean Sea: 
https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_1508_EU_s
pecies_from_AquaMaps_and_FishBase.txt 

The Web service interface and WPS access point are available on the D4Science e-Infrastructure 
(https://services.d4science.org/). 

Subscription to the (free-to-use) Biodiversity Lab Virtual Research Environment is required to 
properly size the computational resources to the users’ request load 
(https://services.d4science.org/group/d4science-services-gateway/explore). 

After subscription, the ENM Workflow Web interface will be freely accessible at 
https://services.d4science.org/group/biodiversitylab/data-
miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.t
ransducerers.ECOLOGICAL_NICHE_MODELLER 

Example input datasets are available at data.d4science.net/cGHy and data.d4science.net/MQtR, 
as indicated in the Web interface. No fee is required to use the service.  

6.2 Data availability 

We also published all data/maps resulting from the described ENMs publicly on Zenodo. 

In particular, regarding the 1508 EcoScope-area species: 

• The ensemble ecological niche models at 0.5° resolution (with projections for 2019, and 
2050 and 2100 under RCP2.6, RCP4.5, and RCP8.5) are available at the following link: 
https://zenodo.org/record/7898942 

• The biodiversity index (species richness) distribution at 0.5° resolution, with future 
projections, is available at: https://zenodo.org/record/7899656 

• The individual ecological niche models - through AquaMaps, Artificial Neural Networks, 
Maximum Entropy, and Support Vector Machines - at 0.5° resolution (with future 
projections) are available at: https://zenodo.org/record/7432646 

• The species observation records and environmental data used (with projections) are 
available at: https://zenodo.org/record/7361251 

These repositories were the basis of the WP3 data import operations for the same data. 

https://github.com/cybprojects65/EcologicalNicheModellingWithR
https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_1508_EU_species_from_AquaMaps_and_FishBase.txt
https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_1508_EU_species_from_AquaMaps_and_FishBase.txt
https://services.d4science.org/
https://services.d4science.org/group/d4science-services-gateway/explore
https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.ECOLOGICAL_NICHE_MODELLER
https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.ECOLOGICAL_NICHE_MODELLER
https://services.d4science.org/group/biodiversitylab/data-miner?OperatorId=org.gcube.dataanalysis.wps.statisticalmanager.synchserver.mappedclasses.transducerers.ECOLOGICAL_NICHE_MODELLER
https://zenodo.org/record/7898942
https://zenodo.org/record/7899656
https://zenodo.org/record/7432646
https://zenodo.org/record/7361251
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We also asked the EcoScope partners to provide a list of species of particular ecological and 
commercial interest in their areas.  

This list is available at the following link: 
https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_96_EU_spe
cies_of_commercial_interest.txt 

For these species (96 total), we produced higher-resolution models at 0.1° resolution. We 
published also these data on Zenodo. In particular: 

• The ensemble ecological niche models and species richness (indicated as "biodiversity 
index") for 2019 at 0.1° resolution were uploaded at: https://zenodo.org/record/7958596 

• The individual ecological niche models produced through AquaMaps, Artificial Neural 
Networks, Maximum Entropy, and Support Vector Machines for 2019 at 0.1° resolution are 
available at: https://zenodo.org/record/7958563 

6.3 Notes on data and model availability and interaction with the other Work Packages 

We integrated the data and maps produced with the WP3 EcoScope platform to make them 
available and interoperable with the data produced by all WPs. This operation required us to 
accurately describe the metadata and organise all (ASC-formatted) data on Zenodo in a way that 
facilitated quick import into the platform. We also provided the same data to WP6 and WP4-Task 
4.4 directly. 

We published the ENM workflow as an interoperable and Open Science-compliant Web service 
to prepare it for integration with other software, including the WP3 EcoScope platform. However, 
it is important to highlight that, by the mandate of the institutes involved in this deliverable, the 
Web service had to be openly available without fees required, independently of future, different 
business plans. Therefore, we preferred to keep the Web service separate from other platforms, 
taking the D4Science long-term sustainability as a guarantee of future open service availability. 

https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_96_EU_species_of_commercial_interest.txt
https://github.com/cybprojects65/EcologicalNicheModellingWithR/blob/main/List_of_96_EU_species_of_commercial_interest.txt
https://zenodo.org/record/7958596
https://zenodo.org/record/7958563
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